1 Gaussian Elimination

1.1 Concepts

1. In order to solve a system of equations to find the solution or determine if there are zero or infinitely many solutions, use Gaussian elimination on the augmented matrix, a matrix formed by appending the answer vector to the original matrix. A system of equations is consistent if there is at least one solution and inconsistent if there are no solutions.

1.2 Problems

2. True FALSE As soon as we see a row like ($000 \ldots 0 \mid 0$) during Gaussian elimination, we know that the system will have infinitely many solutions.

Solution: See Problem 5.
3. TRUE False If we see a row like $(000 \ldots 0 \mid 0)$ then we know the determinant of the matrix.

Solution: The determinant will have to be 0 because there will be 0 or ∞ solutions.
4. Use Gaussian elimination on the following augmented matrix. Write the equations these correspond to.

$$
\left(\begin{array}{ccc|c}
1 & 2 & 1 & 3 \\
0 & -1 & -1 & 2 \\
-3 & 0 & -2 & -1
\end{array}\right)
$$

Solution: Add 3 times the first row to the third row to get

$$
\left(\begin{array}{ccc|c}
1 & 2 & 1 & 3 \\
0 & -1 & -1 & 2 \\
-3 & 0 & -2 & -1
\end{array}\right) \xrightarrow{I I I+3 I}\left(\begin{array}{ccc|c}
1 & 2 & 1 & 3 \\
0 & -1 & -1 & 2 \\
0 & 6 & 1 & 8
\end{array}\right) \xrightarrow{I+2 I I, I I I+6 I I}\left(\begin{array}{ccc|c}
1 & 0 & -1 & 7 \\
0 & -1 & -1 & 2 \\
0 & 0 & -5 & 20
\end{array}\right)
$$

$$
\xrightarrow{I I I /-5}\left(\begin{array}{ccc|c}
1 & 0 & -1 & 7 \\
0 & -1 & -1 & 2 \\
0 & 0 & 1 & -4
\end{array}\right) \xrightarrow{I+I I I I I I+I I I}\left(\begin{array}{ccc|c}
1 & 0 & 0 & 3 \\
0 & -1 & 0 & -2 \\
0 & 0 & 1 & -4
\end{array}\right) \xrightarrow{-I I}\left(\begin{array}{ccc|c}
1 & 0 & 0 & 3 \\
0 & 1 & 0 & 2 \\
0 & 0 & 1 & -4
\end{array}\right)
$$

Therefore the solution is $(3,2,-4)$.
5. Use Gaussian elimination to solve the following system of equations:

$$
\left\{\begin{array}{l}
2 x_{1}+x_{2}-x_{3}=4 \\
-4 x_{1}-2 x_{2}+2 x_{3}=-6 \\
6 x_{1}+3 x_{2}-3 x_{3}=12
\end{array}\right.
$$

Solution: Writing this as an augmented matrix, we get

$$
\left(\begin{array}{ccc|c}
2 & 1 & -1 & 4 \\
-4 & -2 & 2 & -6 \\
6 & 3 & -3 & 12
\end{array}\right) \xrightarrow{I I+2 I, I I I-3 I}=\left(\begin{array}{ccc|c}
2 & 1 & -1 & 4 \\
0 & 0 & 0 & 2 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

So this system of equations has no solutions.
6. Find conditions on a, b such that the following system has no solutions, infinitely many, and a unique solution.

$$
\left\{\begin{array}{l}
x+a y=2 \\
4 x+8 y=b
\end{array}\right.
$$

Solution: We want to solve the equation

$$
\left(\begin{array}{ll}
1 & a \\
4 & 8
\end{array}\right)\binom{x}{y}=\binom{2}{b} .
$$

We know that this has a unique solution if the determinant is nonzero so we need $8-4 a \neq 0$ or $a \neq 2$. For all $a \neq 2$ and any b, this has a unique solution.
Now if $a=2$, we know that this solution has zero or infinite solutions. To tell, we need to use Gaussian elimination. Putting it into an augmented matrix and solving gives us

$$
\left(\begin{array}{ll|l}
1 & a & 2 \\
4 & 8 & b
\end{array}\right) \xrightarrow{I I-4 I}\left(\begin{array}{ll|c}
1 & a & 2 \\
0 & 0 & b-8
\end{array}\right)
$$

Thus if $b \neq 8$, then we have an inconsistent system and the system has no solutions. If $b=8$, then there are infinitely many solutions.
7. Find $\left(\begin{array}{lll}1 & 3 & 1 \\ 0 & 1 & 1 \\ 2 & 5 & 2\end{array}\right)^{-1}$.

Solution: We need to use Gaussian elimination to reduce

$$
\begin{aligned}
& \left(\begin{array}{lll|lll}
1 & 3 & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 \\
2 & 5 & 2 & 0 & 0 & 1
\end{array}\right) \xrightarrow{I I I-2 I}\left(\begin{array}{ccc|ccc}
1 & 3 & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 \\
0 & -1 & 0 & -2 & 0 & 1
\end{array}\right) \\
& \xrightarrow{I-3 I I, I I I+I I}\left(\begin{array}{ccc|ccc}
1 & 0 & -2 & 1 & -3 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & -2 & 1 & 1
\end{array}\right) \xrightarrow{I+2 I I I, I I-I I I}\left(\begin{array}{ccc|ccc}
1 & 0 & 0 & -3 & -1 & 2 \\
0 & 1 & 0 & 2 & 0 & -1 \\
0 & 0 & 1 & -2 & 1 & 1
\end{array}\right)
\end{aligned}
$$

Thus the inverse is $\left(\begin{array}{ccc}-3 & -1 & 2 \\ 2 & 0 & -1 \\ -2 & 1 & 1\end{array}\right)$.
8. Use Gaussian elimination to solve the following system of equations:

$$
\left\{\begin{array}{l}
x_{1}-2 x_{2}-6 x_{3}=5 \\
2 x_{1}+4 x_{2}+12 x_{3}=-6 \\
x_{1}-4 x_{2}-12 x_{3}=9
\end{array}\right.
$$

Solution: Using Gaussian elimination gives

$$
\begin{gathered}
\left(\begin{array}{ccc|c}
1 & -2 & -6 & 5 \\
2 & 4 & 12 & -6 \\
1 & -4 & -12 & 9
\end{array}\right) \xrightarrow{I I-2 I, I I I-I}\left(\begin{array}{ccc|c}
1 & -2 & -6 & 5 \\
0 & 8 & 24 & -16 \\
0 & -2 & -6 & 4
\end{array}\right) \\
\stackrel{I I / 8, I I I /-2}{ }\left(\begin{array}{ccc|c}
1 & -2 & -6 & 5 \\
0 & 1 & 3 & -2 \\
0 & 1 & 3 & -2
\end{array}\right) \xrightarrow{I+2 I I, I I I-I I}\left(\begin{array}{ccc|c}
1 & 0 & 0 & 1 \\
0 & 1 & 3 & -2 \\
0 & 0 & 0 & 0
\end{array}\right)
\end{gathered}
$$

Solving, we get $x_{1}=1, x_{2}=-2-3 x_{3}$ and x_{3} can be whatever it wants. This means there are an infinite number of solutions, that the determinant of the original matrix is 0 .
9. Come up with an example of a consistent system of equations with 3 equations and 2 variables. Give an example of an inconsistent system of linear equations with 2 equations and 3 variables.

Solution: One example for a consistent system is $x+y=11,2 x+3 y=23,-x+2 y=$ -8 with solution $x=10, y=1$.
One example for an inconsistent system is $x+2 y+3 z=2, x+2 y+3 z=1$, because it has no solutions.
10. Use Gaussian elimination to solve the following system of equations:

$$
\left\{\begin{array}{l}
z-3 y=-6 \\
x-2 y-2 z=-14 \\
4 y-x-3 z=5
\end{array}\right.
$$

Solution: First write it in an augmented matrix.

$$
\begin{gathered}
\left(\begin{array}{ccc|c}
0 & -3 & 1 & -6 \\
1 & -2 & -2 & -14 \\
-1 & 4 & -3 & 5
\end{array}\right) \xrightarrow{I \leftrightarrow I I}\left(\begin{array}{ccc|c}
1 & -2 & -2 & -14 \\
0 & -3 & 1 & -6 \\
-1 & 4 & -3 & 5
\end{array}\right) \xrightarrow{I I I+I}\left(\begin{array}{ccc|c}
1 & -2 & -2 & -14 \\
0 & -3 & 1 & -6 \\
0 & 2 & -5 & -9
\end{array}\right) \\
\stackrel{I-2 / 3 I I, I I I+2 / 3 I I}{ }\left(\begin{array}{ccc|c}
1 & 0 & -8 / 3 & -10 \\
0 & -3 & 1 & -6 \\
0 & 0 & -13 / 3 & -13
\end{array}\right) \xrightarrow{I I I * 3 /-13}\left(\begin{array}{ccc|c}
1 & 0 & -8 / 3 & -10 \\
0 & -3 & 1 & -6 \\
0 & 0 & 1 & 3
\end{array}\right) \\
\\
\\
\xrightarrow{I+8 / 3 I I I, I I-I I I}\left(\begin{array}{ccc|c}
1 & 0 & 0 & -2 \\
0 & -3 & 0 & -9 \\
0 & 0 & 1 & 3
\end{array}\right) \xrightarrow{I I I-3}\left(\begin{array}{ccc|c}
1 & 0 & 0 & -2 \\
0 & 1 & 0 & 3 \\
0 & 0 & 1 & 3
\end{array}\right)
\end{gathered}
$$

Thus the solution is $(-2,3,3)$.

